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PART 4. SEMI LINEAR LANGUAGES AND PARIKH'S THEOREM 
 

Context free languages have two important computational properties that make them 

atrractive and that have played an important role in the development of grammar 

formalisms for the analysis of natural language that take computational concerns 

seriously.  These properties are polynomial parsing and semi-linearity.   

 As we will see, there are phenomena in natural languages that require our 

grammar formalisms to go beyond context free grammars.  But how far should we 

deviate from context free grammars?  Aravind Joshi, possibly the foremost researcher 

in developing such grammar formalisms, has proposed to take polynomial parsing and 

semi-linearity as methodological constraints on developing 'computationally aware 

grammars for natural languages':  it is computationally (and linguistically) fruitful to 

assume that natural languages allow polynomial parsing and are semi-linear.   

Whether ultimately true or not, fact is that Yoshi's assumption has played an 

important role in the development of such grammar formalisms over the last twenty 

years. 

 In this text I will not discuss parsing extensively.  But I will mention here a 

few aspects of polynomial parsing. 

 

Let G be a grammar. 

 

A parsing algorithm for grammar G is an algorithm which determines for every 

string of VT* whether or not it is in L(G). 

 

The time that a parsing algorithm for G requires to parse string α of VT* is the 

minimal number of steps required by the algorithm to decide whether α is in L(G) or 

not.   

 

Take for each string α of VT* of lenght n the time that the parsing algorithm for G 

requires to parse that string.  This is a set of numbers.  Take the maximal number. 

This maximal number is the time that a parsing algorithm for G requires for parsing 

strings of length n of VT*. 

 

The speed with which a parsing algorithm for G parses language L(G) is the function 

which maps every number n onto the time that the parsing algorithm requires 

for parsing strings of length n of VT*. 

 

A language L can be parsed in polynomial time if there is an algorithm for a 

grammar G for L such that the speed with which that algorithm parses L(G) is a 

function of the form:   

 for every n:  speed(n) = ak(n
k
) + ak1(n

k1
) + ... + ak2(n

2
) + a1(n) + a0 

 where k, a0,...,ak are numbers. 

 

The  highest exponent k is called the degree of the time functions.  It  can be shown 

that for polynomial time functions only the degree is relevant (meaning that 

algorithms in a polynomial of degree k can be speeded up to run in time n
k
). 

 

Note that parsability in polynomial time expresses a worst case boundary.  If a 

language is parsable in cubic time n
3
, this means that at worst you will find the 

answer to whether a string of length n is in the language or not in n
3
 steps.   
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This may well mean that for many strings of length n less steps are required (with a 

minimum of n steps, since reading the string takes n steps). 

 

Of course, an algorithm that runs in time, say, n
64

  will be very slow on its worst 

cases.  But, the intuition in computer science is: that is still better than nothing: 

In practice, computer scientists are not afread of algorithms that run in, say, cubic 

time (or even worse).  In particular, because experience tells you that if a parsing 

algorithm works in cubic time, in practice many cases (typically including the ones 

you will come across most) require much less time (linear time: n+k, sometimes n
2
, 

rarely n
3
).    

 

If the speed function is of the form speed(n)=m
n
 (with n the length of the input), the 

algorithm runs in exponential time.  . 

 

The boundary between polynomial time and exponential time is a natural one:  we can 

define how fast functions increase, and with that definition, it can be shown that every 

exponential function increases faster than any polynomial function. 

 

Algorithms that operate in exponential time are ineffective.  Languages that require 

exponential time for parsing may be theoretically parsable, but are in practice 

unparsable.   

 

Within  the class of languages parsable by, or more general problems decidable by, 

algorithms that run in polynomial time we distinguish between class P of problems 

decidable by deterministic algorithms that run in polynomial time, and the class NP 

of problems decidable by non-deterministic algorithms that run in polynomial time. 

The class P of problems decidable by deterministic algorithms is generally regarded 

as the class of problems that have effective solutions.  

Non-deterministic algorithms that run in polynomial time are not regarded as 

effective. 

 

While it is the case that the class of all problems decidable by deterministic 

algorithms (turing machines) coincides with the class of problems decidable by  

non-deterministic algorithms, this doesn't give effective solutions to all polynomially 

decidable problems:  if we have a non-deterministic polynomial algorithm deciding a 

problem, we know that a deterministic algorithm exists as well, but not that the latter 

is also polynomial:  and a deterministic exponential algorithm is ineffective. 

 

It has so far not been shown that there is any problem for which a non-deterministic 

polynomial algorithm exists, but no deterministic polynomial algorithm.   

On the other hand, there are many problems for which a non-deterministic polynomial 

algorithm exists, (i.e. the problem is in NP),  but for which no deterministic 

polynomial algorithm is known. 

 

The question:  P = NP? is a famous open problem  (meaning that you can make 

money by solving it). 

If NPP is not empty, the problems in that set will be regarded as ineffective as well. 
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We now come to grammars. 

 

We first mention two facts: 

 

Fact:  For every context sensitive grammar G a parsing algorithm for G exists. 

           But there is no guarantee that context sensitive languages can be parsed in  

           polynomial time. 

           The same is true for indexed grammars.  

 

Fact: Every context free language can be parsed in (deterministic) polynomial time. 

 

The standard general algorithm for parsing context free grammars, called, the Cocke-

Younger-Kasami (CYK) algorithm runs in cubic time n
3
.   Another well known 

algorithm, Earley's algorithm, also runs in cubic time in general, but in n
2
 for 

unambiguous grammars, and in linear time for many grammars.  Faster algorithms 

exist, for instance, Valiant's algorithm from 1975 runs in the time it takes you to 

multiply two n  n matrices (which in 1981 was n
2.52…

). 

 

 With Joshi, it seems reasonable to assume that the least you want to require of 

your grammar formalism for natural languages is that it allows (deterministic) 

polynomial parsing. 

 I will not discuss parsing further.  So we move to Joshi's other methodological 

constraint:  semi-linearity.  That brings us to technically the most difficult part of this 

class: a discussion of Parikh's theorems for context free grammars and context free 

languages. 
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1. LINEAR AND SEMI LINEAR TREE SETS 

 

Let G be a context free grammar with non-terminal vocabulary VN and terminal 

vocabulary VT.  I repeat: 

  

An I-tree in G is a parse tree in G with top label S and only terminal symbols  

(or e)  on the leaves. 

 

Thus, for context free grammar G, T(G) is the set of all I-trees for G. 

 

Example: 

In a grammar with rules SB, BC B D,  Cc, Bb, Dd, the following tree is 

an I-tree:  

 

 S 

 

 B 

 

     C     B    D 

 

     c      b     d 

 

Next, we define: 

 

An A-tree in G is a parse tree in G with some non-terminal label B on the top  

node and terminal symbols (or e) on all leaves, except for one, which has the  

same label B as the top node. 

 

In the same grammar, the following tree is an A-tree: 

 

 

 B 

 

     C           D 

 

     c      B     d 

 

Remember we discussed the length of a path in an I-tree, and we assumed that it is the 

number of nodes from top to leaf, minus the leaf-node which is labeled by the 

terminal symbol.  We extend this notion to A-trees, and assume that also for the one 

path that ends in the non-terminal, the length of the path is the number of nodes from 

top to leaf, minus the leaf-node which is labeled with the non-terminal. 

Thus, the I-tree above has three paths of length 3, the A-tree above has two paths of 

length 2, and one of length 1. 

 

 The height of tree T is the length of the maximal path in T.   
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Let T be a parse tree in G. 

 

The signature of T, s(T), is the set of non-terminal labels occurring on one or  

more nodes in T. 

 

So the signature of the above I-tree is:  {S,B,C,D} 

     the signature of the above A-tree is: {B,C,D} 

 

The next notions require careful attention: 

 

Let Z be a set of non-terminal labels of G.  Z is, of course, a finite set of non-

terminals.  Assume |Z|=n. 

 

 TZ is the set of all I-trees in G with signature Z. 

 

For TZ we define: 

 

 IZ, the set of initial trees for TZ, is the set of all I-trees in TZ of height at most  

n
2
+1. 

 

 AZ, the set of auxiliary trees for TZ, is the set of all A-trees T in G of height  

at most n
2
+1 such that s(T)  Z. 

 

This means the following: 

TZ is the set of all constituent structure trees of G in which the non-terminal labels 

occurring on the nodes  are exactly the non-terminals in Z. 

This means that on I-trees in TZ the non-terminals in Z may occur more than once. 

But an I-tree in which a non-terminal occurs which is not in Z is not in TZ.  And, 

importantly, an I-tree in which a non-terminal from Z does not occur is also not in TZ. 

 

IZ is a subset of TZ.  It is the set of all I-trees with signature Z  in which the length of 

the maximal path is restricted to not more than the square of the size of Z plus 1 itself. 

(the rationale for this restriction will become clear in the proofs later). 

 

AZ is not a subset of TZ.  AZ is a set of A-trees in a signature which is part of Z.   

This means that all the non-terminal labels occurring on nodes in a tree in AZ are 

labels from Z.   

As before, a label from Z may occur more than once in a tree in AZ.   

As before, if a label occurs on a A-tree which is not in Z, that A-tree is not in AZ. 

Similar to what we required for I-trees, if the length of the maximal path in an A-tree 

exceeds n
2
+1 that A-tree is not in AZ. 

 

But this time, if an A-tree satisfies the above constraints, but doesn't contain all the 

non-terminal labels of Z on its nodes, we still include it in AZ. 

 

So the trees in TZ and IZ are required to contain all the non-terminal labels in Z, the 

trees in AZ are required to contain a subset of the non-terminal labels in Z.   

And the trees in TZ and AZ are restricted in height. 

Fact:  Since Z is a finite set of non-terminals, and the height of the trees in IZ and AZ  

           are restricted to n
2
+1, both IZ and AZ are finite sets of trees, for each set Z  VN. 
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Tree Adjunction. 
 

Let T be an I-tree in G with node x labeled B. 

Let TB be an A-tree in G with topnode labeled with B. 

Tree adjunction forms the following tree: ADJ[T,TB,x] 

 

1. Let Tx be the subtree of T dominated by node x. 

    Remove Tx from T, leaving node x  (i.e. replace tree Tx in T by x). 

 

  T    T  (= T  Tx) 

 

            x,B  =>            x,B    

 

           Tx 

 

             B 

 

             Tx 

 

We will call this tree T  Tx  

 

2. Attach tree TB at node x in T  Tx (identifying their toplabels B):  

  T      

 

            x,B                

 

            

 

            B   

          

         B 

          

                   Tx 

 

We will call this tree (T  Tx) + TB 

 

3. Attach tree Tx to the bottom node with label B (identifying their labels): 

  T   (= ADJ[T,TB,x]) 

 

            x,B                

 

            

 

            B   

          

            Tx   

          

So this is: ((T  Tx) + TB) + Tx 

If we call this tree T' then extend the use of  to: T'  B = T 
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ADJ[T,TB,x] is itself an I-tree in G, since T is an I-tree in G, TB is a parse tree in G, 

and after adjunction, the resulting tree has only terminal strings at the leaves. 

 

Moreover, if T  TZ and TB  AZ, then ADJ[T,TB,x]  TZ, because all the labels in 

TB already occur in T, i.e. s(ADJ[T,TB,x]) = s(T) = Z. 

 

We define DER[I,A], the set of I-trees derived from set of I-trees I and set of   

A-trees A by tree adjunction: 

 

 DER[I,A] is the smallest set of I-trees such that: 

 1.  I  DER[I,A]. 

 2.  If T  DER[I,A], x a node in T with label B and TB  A with toplabel B, 

                 then: ADJ[T,TB,x]  DER[I,A]. 

 

Thus, the result of tree adjoining any A-tree at a node with the right label in an I-tree 

is a derived tree, and adjoining an A-tree in  a derived tree is a derived tree as well. 

 

A set of I-trees X is linear iff for some finite set of I-trees I and some finite  

set of A-trees A, such that each A-tree can be adjoined in each I-tree:  

X = DER[I,A]. 

 

A set of I-trees X is semi linear iff it is the union of a finite number of linear  

sets of I-trees. 

 

FACT 1: DER[IZ,AZ] is a linear set of I-trees. 

 

PROOF: 

By the definition of IZ, any initial tree in IZ (and hence any derived tree) will have a 

node with the right label for adjunction, for each auxiliary tree in AZ (since all the 

toplabels of the auxiliary trees occur in each initial (and hence in each derived) tree. 

So each auxiliary tree can be adjoined in each initial tree.   

Moreover, we have already noted above that IZ and AZ are finite sets of trees, and that 

the result of adjoining an auxiliary tree in an I-tree is an I-tree, hence DER[IZ,AZ] is 

indeed a linear set of I-trees. 

 

 

THEOREM (Parikh): For every set of nonterminals Z: TZ = DER[IZ,AZ]. 

 

PROOF: 

A. DER[IZ,AZ]  TZ 

We have already noticed this above: all the trees in IZ are in TZ, and the result of 

adjoining auxiliary trees into trees in TZ stays in TZ. 

 

B. TZ  DER[IZ,AZ] 

1. If T  IZ, T  DER[IZ,AZ] by definition. 

2. If T  TZ, but T  IZ, then the height of T is bigger than n
2
+1. 

What you show is that you can always reduce such a tree T to a smaller tree in TZ by 

cutting out of it an auxiliary tree in AZ.  The resulting smaller tree will be in 

DER[IZ,AZ] by induction hypothesis, and hence, T is in that set by adjunction with 

the auxiliary tree you cut out.   
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Assume: every tree T  TZ with at most k nodes is in DER[IZ,AZ]. 

Let T  TZ with k+1 nodes and height more than n
2
+1.  We prove that T  DER[IZ,AZ]. 

The height of T is more than n
2
+1.  This means that T contains a path of length more 

than n
2
.  This means that at least one label of Z occurs at least n+1 times on this path. 

 

Claim:  There is a node x  T such that: 

  1. Tx contains a path with exactly n+1 occurrences of the same label. 

  2. There is no node y in Tx (except for x) such that Ty contains a path with 

                 more than n occurrences of any label. 

 

Start out on a path of lenght more than n
2
+1, walk up from the leaf, until you find for 

the first time a label B for the n+1-th time, say at node x.  Stop there. If the tree Tx 

satisfies condition 2, you are done.  If it doesn't, go to the daughter nodes.  At least 

one of them will satisfy the first condition, but be of smaller height.  Repeat for that 

daughternode the same procedure,.etc.  Since you get to smaller and smaller trees,  

you will ultimately find a tree that does satisfy both conditions.  That is the tree we 

are interested in. 

So let us assume that we have found our tree Tx which satisfies both properties 

in the claim, say, with label B on x the only label occurring n+1 times in Tx on any 

path.   This means that each path in Tx has maximal length of n
2
+1, namely label B 

maximally n+1 times, any other label maximally n times.  This means that any subtree 

of B, including any A-tree has height at most n
2
+1.      

There are two cases:   

- Label B occurs n+1 times in Tx on exactly one path. 

- Label B occurs n+1 times in Tx on more than one path. 

In the first case, follow the path down, in the second case, choose on of the paths to 

follow down. Number the nodes on the relevant path 1,…n+1 down from Tx.  

Now come the crucial observations: 

 

1. For every i ≤ n: s(Ti+1)  s(Ti) 

 This is obvious, because Ti+1 is a subtree of Ti (since i and i+1 are on the same path). 

2. For every i ≤ n+1: s(Ti)  Ø. 

This is also obvious, because each of them contain label B. 

3. |Z|=n and there are n+1 nodes with label B on the path. 

This means that it cannot be the case that for every i ≤ n: s(Ti)  s(Ti+1). 

 

This is because we have an increasing chain of subsets of Z, and there aren't enough 

elements in Z to make all subsets in the chain distinct. 

 Hence we have shown that for some i ≤ n: s(Ti) = s(Ti+1) 

These nodes i and i+1 are the ones we need.  What we can prove now is:  if we cut out 

the bit between nodes i and i+1, the result is an I-tree with the same signature, hence 

in TZ, and the bit between i and i+1 is an A-tree in  AZ. More precisely: 

 

We look at I-tree: (T  Ti) + Ti+1 and A-tree Ti  Ti+1, and we observe: 

1. (T  Ti) + Ti+1  TZ (because Ti and Ti+1 have the same signature). 

2. The number of nodes in (T  Ti) + Ti+1  is at most k (Minimally one node with label B is 

removed).  This means, by induction hypothesis, that (T  Ti) + Ti+1  DER[IZ,AZ] 

3. Ti  Ti+1 is an A-tree.  s(Ti  Ti+1)  Z.  As we observed above, the height of  

Ti  Ti+1 is at most n
2
+1, hence Ti  Ti+1  AZ.   
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Now T = ADJ[(T  Ti) + Ti+1, Ti  Ti+1, i], Hence we have proved that T  DER[IZ,AZ]. 

 

The following picture shows what we have done: 

           T 

 

            n+1,B 

 

 

 

 

            i,B 

      Ti 

 

 

 

               i+1,B 

                   

               

                

            Ti+1  

 

CORROLLARY 1: For every set of non-terminals Z: TZ is a linear set of I-trees. 

 

FACT 2: There are only finitely many subsets Z of VN, since VN is finite. 

     i.e. pow(VN) = {Z1,...,Zn}. 

 

FACT 3: T(G) = 
1ZT  ...  

nZT  

 

PROOF: Obvious: 

 -for any TZ: TZ  T(G), by definition, so 
1ZT  ...  

nZT  T(G) 

 -If T  T(G), its non-terminal labels are in some subset Zi of VN, hence 

  T  
iZT , hence T 

1ZT  ...  
nZT . 

 

CORROLLARY 2: For any context free grammar G: T(G) is semi linear. 
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2. LINEAR AND SEMI LINEAR LANGUAGES. 

 

The notions of 'linear' and 'semi linear' defined here depend on the grammar.  Parikh 

defines notions of 'linear' and 'semi linear' that apply to languages independent of the 

grammar. 

 

Let Σ be an alphabet.  Σ = {σ1,...,σn}     

 

ψΣ : Σ*  N
n
, where: 

for every α  Σ*: ψΣ(α) = <|σ1|α,...,|σn|α> 

 

ψΣ defines the length characteristic for each string α. 

 

Example:  

If  Σ = {σ1,σ2,σ3} where σ1 = a and σ2 = b and σ3 = c, then 

ψΣ(aabba) = <3,2,0>  (3 a's, 2 b's, 0 c's) 

 

Let L  Σ* 

 ψΣ(L) = { ψΣ(α): α  L} 

 

The length profile of a language is the set of length characteristics of its strings. 

 

For instance:  Let Σ = {σ1,σ2} where σ1=a and σ2=b. 

 

ψΣ(a
n
b

m
(n,m0)) = {<n,m>: n,m  N} 

 

ψΣ(a
n
b

n
(n,m0)) = {<0,0>,<1,1>,<2,2>,… } 

 

We define addition of length characteristics pointwise: 

 

 <x1,...,xn> + <y1,...,yn> = <x1+y1,...,xn+yn> 

 

So <3,4> + <7,8> = <3+7,4+8> = <10,12>. 

 

Let I = {i1,...,ik} and A = {a1,...,am} be finite subsets of N
n
. 

We will define the length profile derived from initial profile I and auxiliary profile 

A. 

 

 DER[I,A] the profile derived from I and A, is the smallest profile such that: 

 1. I  DER[I,A]. 

 2. If d  DER[I,A] and a  A, then d + a  DER[I,A]. 

 

We can write this in a bit different way: 

 

Fact:  Let again I = {i1,…,ik} and A = {a1,…,am} 

DER[I,A] = 

 {x  N
n
: for some i  I and some numbers n1,…,nm  0: 

                          x = i + n1  a1 + … + nm  am } 
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This means that DER(I,A) is the set of all characteristics that are a linear function of 

some i I and a1…am. 

So:  you can take any i  I and choose any numbers n1…nm0: 

        then i + n1  a1 + … + nm  am is in DER(I,A). 

This motivates the terminology linear. 

Now we define linear and semilinear profiles: 

 

Let X  N
n
. 

 Profile X is linear iff for some finite profiles I,A  N
n
: X = DER[I,A]. 

 

 Profile X is  semi linear iff for some linear X1...Xn: X = X1  ...  Xn. 

 

Examples:   

Both profiles ψΣ(a
n
b

m
(n,m0)) and ψΣ(a

n
b

n
(n,m0)) are linear profiles. 

 

ψΣ(a
n
b

m
(n,m0)) = DER({<0,0>}, {<0,1>,<1,0>}} 

 

ψΣ(a
n
b

n
(n,m0)) = DER({<0,0>},{<1,1>}) 

 

 

We extend function ψΣ to apply to strings of terminals and non-terminals in the 

following way:   

-if  α  (VN  VT)*,  then α⌠VT is the result of deleting every non-terminal symbol 

from α. 

- if  α  (VN  VT)*, then ψA(α) = ψA(α⌠VT).  

 

Thus, the length characteristic of a string of terminals and non-terminals is the length 

characteristic of the result of deleting the non-terminals (i.e. we ignore non-terminals 

in a length characteristic). 

 

We finally come to the theorem that is known as Parikh's theorem: 

 

PARIKH'S THEOREM: Every context free language is semi linear. 

 

PROOF:  

In this proof I will use boldface to indicate the notion of derived tree set and non-

boldface to indicate the notion of derived profile.   

Remember: yield(T) = {yield(T): T  T} 

 

We show that if L is a context free language in alphabet Σ and G is a context free 

grammar for L, then for each Z  VN: yield(TZ) is linear. 

 

Since TZ = DER[IZ,AZ], ψΣ(yield(TZ)) = ψΣ(yield(DER[IZ,AZ])) 
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This means that it suffices to show that:  

 

ψΣ(yield(DER[IZ,AZ])) = DER[ψΣ(yield(IZ)), ψΣ(yield(AZ))]. 

 

Step A. ψΣ(yield(DER[IZ,AZ]))  DER[ψΣ(yield(IZ)), ψΣ(yield(AZ))]. 

 

Assume that x  ψΣ(yield(DER[IZ,AZ])). 

Then there is some tree T   DER[IZ,AZ] such that ψΣ(yield(T)) = x. 

 

T  DER[IZ,AZ] means that there is some I-tree Ti  IZ and some A-trees  

Ta1,…,Tam  AZ  such that  T is the result of a finite sequence of adjunctions of trees   

Ta1…Tam starting with Ti.   

These adjunctions will take place in a certain order, and it may well be that a 

particular tree Tai will need to be adjoined at more than one place in the sequence. 

But, since T  DER[IZ,AZ], in the end you will get T, by definition of DER[IZ,AZ].  

 

This means that for each tree Tai there is a certain number of times ni that that tree is 

adjoined in this sequence starting with Ti and ending with T. 

 

Now, there is an obvious fact about adjunction: 

 

Fact:  ψΣ(yield(ADJ[T,Tai,k]) = ψΣ(yield(T)) + ψΣ(yield(Tai)) 

 

Say that the yield of T is α1α2α3 with characteristic ψΣ(α1α2α3).   

And the yield of Tai is β1Bβ2 with characteristic ψΣ(β1Bβ2) = ψΣ(β1β2) 

(since for characteristic we only count terminal symbols)   

And the adjunction is at node k, and the yield of Tn is α2. 

Then the yield of ADJ(T,Tai,k) = α1β1α2β2α3 

and the characteristic of the yield of this tree is ψΣ(α1β1α2β2α3) =  

ψΣ(α1α2α3) + ψΣ(β1,β2). 

 

But this means that:  

ψΣ(yield(T)) = ψΣ(yield(Ti)) + n1  ψΣ(yield(Ta1)) + … + nm  ψΣ(yield(Tam)) 

 

Now, obviously ψΣ(yield(Ti))  ψΣ(yield(IZ))  and  

for each i: ψΣ(yield(Tai))  ψΣ(yield(AZ)). 

 

Hence, by definition of derived profile: 

 

ψΣ(yield(T))  DER[ψΣ(yield(IZ)), ψΣ(yield(AZ)) 

 

Since ψΣ(yield(T)) = x, we have proved that: 

x  DER[ψΣ(yield(IZ)), ψΣ(yield(AZ)) 

 

This proves step A. 
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Step B. DER[ψΣ(yield(IZ)), ψΣ(yield(AZ))]  ψΣ(yield(DER[IZ,AZ])). 

 

Assume x  DER[ψΣ(yield(IZ)), ψΣ(yield(AZ))]. 

 

IZ is a finite set of trees, so ψΣ(yield(IZ)) is a finite profile {i1,…,ik}. 

AZ  is a finite set of trees, so ψΣ(yield(AZ)) is a finite profile {a1,…,am}. 

 

x  DER[ψΣ(yield(IZ)), ψΣ(yield(AZ))] means that for some i  ψΣ(yield(IZ)) 

and some numbers n1…nm: 

 x = i + n1  a1 + … + nm  am 

 

Choose a tree Ti  IZ with ψΣ(yield(Ti)) = i and choose for each j: 

 a tree Taj  AZ with ψΣ(yield(Taj)) = aj. 

 

Let T be the result of adjoining each tree Taj nj times in Ti. 

So you start with Ti, and you choose some sequence of adjunctions (it doesn't really 

matter which sequence) such that in that sequence each tree Taj gets adjoined nj times. 

 

Since every auxiliary tree in AZ is adjoinable in any initial tree in IZ, every auxiliary 

tree in AZ is adjoinable in every tree in DER(IZ,AZ), and the result of adjunction is 

again in DER(IZ,AZ). 

This means that tree T  DER(IZ,AZ). 

And this means that ψΣ(yield(T))  ψΣ(yield(DER(IZ,AZ))) 

 

But, the same argument about the characteristic of adjunction tells us that: 

ψΣ(yield(T)) = ψΣ(yield(Ti)) + n1  ψΣ(yield(Ta1)) + … + nm  ψΣ(yield(Tam))  = 

  i + n1  a1 + … + nm  am . 

So ψΣ(yield(T)) = x, and hence: 

 

x  ψΣ(yield(DER(IZ,AZ))) 

 

This proves step B. 

 

Putting steps A and B together, we have shown: 

 

ψΣ(yield(DER[IZ,AZ])) = DER[ψΣ(yield(IZ)), ψΣ(yield(AZ))]. 

 

And, with Parikh's theorem about linear tree sets, this means: 

  

ψΣ(yield(TZ])) = DER[ψΣ(yield(IZ)), ψΣ(yield(AZ))] 

 

Thus, for each, Z  VN, yield(TZ) is linear.  

 

Since L(G) = yield(
1ZT )  ...  yield(

nZT ), L(G) is semi linear, and we have proved 

Parikh's theorem: every context free language is semi linear.  
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3. EXAMPLES OF LINEAR LANGUAGES THAT ARE NOT CONTEXT   

    FREE. 

 

Example 1:   a
n
b

n
c

n
(n0) is  linear. 

 

Let Σ = {σ1,σ2,σ3} where σ1=a and σ2=b and σ3=c. 

 

ψΣ(a
n
b

n
c

n
(n0)) = {<n,n,n>: n  0} 

 

I = {<0,0,0>}  A = {<1,1,1>} 

DER[I,A] = {<0,0,0>,<1,1,1>,<2,2,2>,...} 

 

Example 2:  a
n
b

m
c

n
d

m
 (n,m0) is linear. 

 

Let Σ = {σ1,σ2,σ3,σ4} where σ1=a and σ2=b and σ3=c and σ4=d. 

 

ψΣ(a
n
b

m
c

n
d

m
(n,m0)) = {<n,m,n,m>: n,m  0} 

 

I = {<0,0,0,0>}  A = {<1,0,1,0>, <0,1,0,1>} 

DER[I,A] = 

{<0,0,0,0>,<1,0,1,0>,<0,1,0,1>,<1,1,1,1>,<2,1,2,1>,<1,2,1,2>,<2,2,2,2>,... 

                   <2,0,2,0>,<3,0,3,0>,...} 

 

  

Example 3:  αα is linear. 

 

The fact that αα is semi linear follows from the fact that αα
R
 is context free, hence 

semi linear, and the fact that, obviously, αα and αα
R
 have the same length profile. 

But you can also show easily directly that αα is linear. 

 

If the alphabet is Σ ={σ1,...,σn}, then: 

 ψΣ(αα) = {<2k1,...,2kn>: k1,...,kn  0} 

 

I = {<0,...,0>} A = {<2,0,...,0>, <0,2,...,0>,...,<0,...,2,0>,<0,...,0,2>} 

 

Not semi linear are, for instance, exponential languages:  
n

a 2 ,
2na . 
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4. SEMI LINEAR LANGUAGES THAT ARE NOT LINEAR. 

 

The class of semi linear languages is the closure of the class of linear languages under 

union.  The fact that we introduce the notion of semi linearlity at all means that the 

class of linear languages is itself not closed under union, i.,e. that there are semi linear 

languages which are not themselves linear: 

 

Example:  a
n
b

n
(n≥0)  ab

m
(m≥0) is semilinear, but not linear. 

 

The profile of a
n
b

n
(n≥0) is:  

F = {<0,0>,<1,1>,<2,2>,<3,3>,...} 

This is a linear profile:  F = DER({<0,0>},{<1,1>}) 

 

The profile of ab
m

(m≥0) is:  

G = {<1,0>, <1,1>, <1,2>, <1,3>,...} 

This is a linear profile:  G = DER({<1,0>},{<0,1>}) 

 

The profile of a
n
b

n
(n≥0)  ab

m
(m≥0) is: 

F  G = {<0,0>,<1,1>,<2,2>,<3,3>,...<1,0>, <1,1>, <1,2>, <1,3>,...} 

This is, by definition, a semilinear profile. 

The claim is:  F  G is not itself a linear profile. 

 

Proof: 

DER = {<0,0>,<1,1>,…}  {<1,0>,<1,1>,<1,2>,…} 

We show: the only pair of numbers that can be in A is<0,0>.  But, of course, you 

cannot derive DER from a finite set I with A = {<0,0>} 

 

Case 1:  if n  0, then <n,n>  A 

Namely: if <n,n>  A, then <1,0> + <n,n>  DER, hence <n+1,n>  DER. 

But <n+1,n>  DER. 

 

Case 2: if n  0 and n  m, then <n,m>  A. 

Namely: if <n,m>  A, then <1,1> + <n,m>  DER, hence <n+1,m+1>  DER, 

where n+1 > 1 and m+1  n+1. 

But <n+1,m+1>  DER. 

 

These two cases show that if <n,m>  A then n = 0. 

 

Case 3: if m  0, then <0,m>  A. 

Namely, if <0,m>  A, then <2,2> + <0,m>  DER, hence <2,m+2>  DER. 

But <2,m+2>  DER. 

 

With the above, this shows that if <n,m>  A, then n=0 and m = 0. 
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5. CHARACTERIZATION OF SEMI LINEAR LANGUAGES 

 

Which languages are semi linear? 

 

Theorem:  For every linear profile, there is a regular language with that profile. 

 

Proof: 

Let X be a linear profile (of n-tuples), 

X = DER[I,A] with I = {i1,…,ik} and A = {a1,…,am} 

Choose an alphabet Σ  = {σ1,…,σn}, and choose for each i in A a string αi of Σ* of 

characteristic i and for each a 2 A a string αa of Σ* of characteristic a. 

 

We define: 

 

L = {αi1,…,αik} £ {αa1}* £ … £ {αam}* 
 
Claim: ψΣ(L) = X. 

 

A. Any string in L is of the form: αi 
^
 αa1

n1
 
^
 … 

^
 αak

nk
. 

     ψΣ(αi 
^
 αa1

n1
 
^
 … 

^
 αak

nk
) = ψΣ(αi) + n1£ ψΣ(αa1) + … + nk£ψΣ(αak)  = 

                                                   i + n1£a1 + … + nk£ak 2 X 

Hence  ψΣ(L) µ X. 

 

B. Let x 2 X.  Then for some i 2 I and n1,…,nk ≥ 0: x = i + n1£a1 + … nk£ak.   

As we have just seen, this is the characteristic of a string in L, namely  

αi 
^
 αa1

n1
 
^
 … 

^
 αak

nk
.  So x 2 ψΣ(L). 

Hence X µ ψΣ(L).   

   

So indeed ψΣ(L) = X. 

But L is obviously a regular language (formed with £ and * from finite languages. 

This proves the theorem. 

 

 

Corrollary: For any semi linear profile, there is a regular language with that profile. 

 

Proof: 

Let D be a semi linear profile.  That means that for some linear profiles P1,...,Pn:  

D = P1  ...  Pn.   

Take for each Pi a regular language Li that has profile Pi. 

Then L = L1  ...  Ln has profile D.   

Since the union of regular languages is a regular language, it follows indeed that for 

every semi linear profile D, some regular language has that profile. 

 

Since every regular language is semi linear (this follows, of course, from Parikh's 

theorem) we have proved the following: 

 

THEOREM: A language L in alphabet Σ is semi linear iff there is a regular language  

          R in alphabet Σ such that  ψΣ(L) = ψΣ(R) 
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Thus the semi linear languages are precesely the languages that have the same profile 

as a some regular language. 

 

Example: 

We know that a
n
b

n
c

n
 is not contextfree.  its profile is {<n,n,n>,n  0}.  Which regular 

language has that profile?  Well, for instance (abc)
n
. 

 

 

6. CLOSURE PROPERTIES OF SEMI LINEAR LANGUAGES 

 

Theorem:  For any two languages L1 and L2 in alphabet Σ:  

       ψΣ(L1  L2) = ψΣ(L1)  ψΣ(L2)  

        ψΣ(L1  L2) = ψΣ(L1)  ψΣ(L2) 

 

Proof: 

- x 2 ψΣ(L1  L2) iff  

some string α in L1  L2 has profile x iff  

some string α such that α 2 L1 and α 2 L2 has profile x iff x 2 ψΣ(L1) and x 2 ψΣ(L2)  

iff ψΣ(L1)  ψΣ(L2). 

 

- x 2 ψΣ(L1  L2) iff  

some string α in L1  L2 has profile x iff  

some string α such that α 2 L1 or α 2 L2 has profile x iff x 2 ψΣ(L1) or x 2 ψΣ(L2)  iff 

ψΣ(L1)  ψΣ(L2). 

 

Corrolary: If X and Y are semi linear profiles in N
n
 then XY and XY are semi  

                    linear profiles. 

 

Proof:  

Let X and Y be semi linear profiles.  Let  RX be a regular language of profile X and 

RY a regular language of profile Y (they exist by the theorem proved above).   

By the theorem just proved, ψΣ(RX  RY) = X  Y and ψΣ(RX  RY) = X  Y. 

Since RX and RY are regular languages, so are RX  RY and RX  RY.  This means 

that both for X  Y and X  Y there is a regular language with that profile, and by 

the theorem earlier, this means that X  Y and X  Y are semi linear profiles. 

 

Corrollary:  If L1 and L2 are semi linear languages, then L1  L2 and L1  L2 are  

           semi linear languages.  

 

Proof: 

Let L1 and L2 be semi linear languages.  This means that their profiles ψΣ(L1) and 

ψΣ(L2) are semi linear.  By the theorem proved above ψΣ(L1  L2) = ψΣ(L1)  ψΣ(L2) 

and  

ψΣ(L1  L2) = ψΣ(L1)  ψΣ(L2), and by the corrollary, ψΣ(L1)  ψΣ(L2) and  

ψΣ(L1)  ψΣ(L2) are semi linear.  Hence, L1  L2 and L1  L2 are semi linear. 
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Theorem:  The class of semi linear languages is not closed under complementation. 

  

Proof: 

Let Σ = {a,b}.  Look at the language 
n

a 2 b (n≥0). 

We notice a simple fact: 

for each n: ψΣ(
n

a 2 b)= ψΣ(b
n

a 2 ) and b
n

a 2  Σ*
n

a 2 b (n≥0).   

This means that: ψΣ(Σ*
n

a 2 b (n≥0)) = ψΣ(Σ*) = N
n
,  

This is because eliminating all strings in 
n

a 2 b (n≥0) from Σ* leaves for each 

characteristic in the profile of Σ* (which is N
n
) another string in, hence no 

characteristic gets eliminated.  So indeed the profile of Σ*
n

a 2 b (n≥0) is N
n
. 

 

Since N
n
 is a linear profile, the language Σ*

n

a 2 b (n≥0) is a linear language, hence a 

semi linear language.  But its complement is Σ*  (Σ*
n

a 2 b (n≥0))  =  
n

a 2 b (n≥0). 

But the latter is, of course, not a semi linear language.  So we have found a semi 

linear language Σ*
n

a 2 b (n≥0) whose complement is not a semi linear language, and 

hence the class of semi linear languages is not closed under complementation. 

 

 

Theorem:  The class of semi linear languages is closed under homomorphisms. 

 

Proof:  

 Let Σ1 = {σ1,...,σn} and let h:Σ1*Σ2* be a homomorphism. 

 For x  N
n
, let: α be a string of Σ1 such that ψΣ1(α)=x 

  h(x) = ψΣ2(h(α)) 

  h(X) = {h(x): x  X} 

 

The following facts are easy to prove: 

 

Fact 1: h(x + y) = h(x) + h(y) 

 

Corrollary:  h(DER(I,A))= DER(h(I),h(A)) 

 

Fact 2:  ψΣ2(h(L)) = h(ψΣ1(L)) 

 

and the theorem follows from this, 
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7. SOME DISCUSSION. 

 

The theorem which said that semi linear languages are exactly the languages that have 

the same profile as a regular languages tells us that the notion of semi linearity for 

languages by itself  doesn't put any restrictions of the complexity of the language. 

You can see that easily as follows. 

 

Let L be any language in alphabet Σ = {σ1,...,σn}.  Let c be a symbol not in Σ and look 

at the language L' = Σ*  {c}  L: any string in Σ* followed by c followed by any 

string in L. 

Since the profile of L is a subset of the profile of Σ*, the profile of L' is N
n
  {1} 

(1 for the one c).  Since N
n
 is a linear profile, N

n
  {1}is obviously also a linear 

profile.  Hence L' is a linear language. 

Since L can be any language, it can even be an intractable language, a language that 

doesn't even have an type 0 grammar.   

If so, obviously, L' is going to be intractable as well (if L doesn't have a grammar, L' 

doesn't either).  And this means that there are linear languages that are intractable. 

 

Does this mean that the notion of semi linearity is useless? 

Not at all.  It should only be recognized that the heart of Parikh's theorem is not that 

context free languages are semi linear, but that they are semi linear for the right 

reason, because their tree set is semi linear.  That is, we're not simply interested in 

(semi) linear languages.  We're interested in (semi) linear languages that can be 

generated in a (semi) linear way.  

 

There is a widely shared intuition, that natural languages work this way. 

This intuition is based partly on computational concerns, partly on linguistic concerns.   

 

The computational concerns are based I think partly on the fact that semi linearity 

seems to impose such a reasonable constraint on the operations that you can allow 

yourself in grammar building, partly on the hope that it might help in explaining why 

we process what we process fast as fast as we process what we process fast. 

 

The linguistic concerns are based on the fact that the phenomena that have been 

discovered that pose reasonable challenges to the assumption that natural languages 

are context free do not bring natural languages outside the class of semi linear 

languages. 

 

This means that semi linearity of the generated language is interesting as a necessary 

constraint on grammars for natural languages.  If you look at the grammar formalisms 

that have been developed over the last twenty years for natural language research, in 

particular, HPSG grammars (headed phrase structure grammars), unification 

grammars, categorial grammars, tree adjunction grammars, and many related 

formalisms, then it can be argued that the Working Hypothesis (formulated by Joshi) 

that natural languages are semi linear, has played an important role in their 

formulation.  (And even that other prominent grammar formalisms, in particular 

Lexical Functional Grammar, but also Government and Binding theory, and some 

versions of the Minimalist program have felt the semi linear wind.   

 

 


